Abstract
It is feasible to improve the performance of B-mode ultrasound (BUS) based computer-aided diagnosis (CAD) for liver cancers by transferring knowledge from contrast-enhanced ultrasound (CEUS) images. In this work, we propose a novel feature transformation based support vector machine plus (SVM+) algorithm for this transfer learning task by introducing feature transformation into the SVM+ framework (named FSVM+). Specifically, the transformation matrix in FSVM+ is learned to minimize the radius of the enclosing ball of all samples, while the SVM+ is used to maximize the margin between two classes. Moreover, to capture more transferable information from multiple CEUS phase images, a multi-view FSVM+ (MFSVM+) is further developed, which transfers knowledge from three CEUS images from three phases, i.e., arterial phase, portal venous phase, and delayed phase, to the BUS-based CAD model. MFSVM+ innovatively assigns appropriate weights for each CEUS image by calculating the maximum mean discrepancy between a pair of BUS and CEUS images, which can capture the relationship between source and target domains. The experimental results on a bi-modal ultrasound liver cancer dataset demonstrate that MFSVM+ achieves the best classification accuracy of 88.24±1.28%, sensitivity of 88.32±2.88%, specificity of 88.17±2.91%, suggesting its effectiveness in promoting the diagnostic accuracy of BUS-based CAD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.