Abstract
Detecting faces across multiple views is more challenging than in a frontal view. To address this problem, an efficient approach is presented in this paper using a kernel machine based approach for learning such nonlinear mappings to provide effective view-based representation for multi-view face detection. In this paper Kernel Principal Component Analysis (KPCA) is used to project data into the view-subspaces then computed as view-based features. Multi-view face detection is performed by classifying each input image into face or non-face class, by using a two class Kernel Support Vector Classifier (KSVC). Experimental results demonstrate successful face detection over a wide range of facial variation in color, illumination conditions, position, scale, orientation, 3D pose, and expression in images from several photo collections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.