Abstract
This paper presents a robust multi-view method for tracking people in 3D scene. Our method distinguishes itself from previous works in two aspects. Firstly, we define a set of binary spatial relationships for individual subjects or pairs of subjects that appear at the same time, e.g. being left or right, being closer or further to the camera, etc. These binary relationships directly reflect relative positions of subjects in 3D scene and thus should be persisted during inference. Secondly, we introduce an unified probabilistic framework to exploit binary spatial constraints for simultaneous 3D localization and cross-view human tracking. We develop a cluster Markov Chain Monte Carlo method to search the optimal solution. We evaluate our method on both public video benchmarks and newly built multi-view video dataset. Results with comparisons showed that our method could achieve state-of-the-art tracking results and meter-level 3D localization on challenging videos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.