Abstract
Dry hobbing has received extensive attention for its environmentally friendly processing pattern. Due to the absence of lubricants, hobbing process is highly dependent on process parameters combination since using unreasonable parameters tends to affect the machining performance. Besides, the consideration of tool life is frequently ignored in gear hobbing. Thus, to settle the above issues, a multi-objective parameters decision approach considering tool life is developed. Firstly, detailed quantitative analysis between process parameters and hobbing performance, i.e., machining time, production cost and tool life is introduced. Secondly, a multi-objective parameters decision-making model is constructed in search for optimum cutting parameters (cutting velocity v, axial feed rate $$f_{{\text{a}}}$$ ) and hob parameters (hob diameter d0, threads z0). Thirdly, a novel algorithm named multi-objective multi-verse optimizer (MOMVO) is utilized to solve the presented model. A case study is exhibited to show the feasibility and reliability of the proposed approach. The results reveal that (i) a balance can be achieved among machining time, production cost and tool life via appropriate process parameters determination; (ii) optimizing cutting parameters and hob parameters simultaneously contributes to optimal objectives; (iii) considering tool life provides usage precautions support and process parameters guidance for practical machining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.