Abstract

This paper assesses the effectiveness of cooperative localization for improving the performance of closed-loop control systems for networks for autonomous multi-vehicle navigation. Nonlinear dynamic models of two- and three-dimensional vehicles are presented along with their linearized forms. A nonlinear control algorithm is then presented based on the dynamic model. Relative position measurement equations and their linearized forms are introduced. The state and measurement equations are then employed for the propagation and update steps of an EKF-based cooperative localization algorithm. Initially, a series of experiments with networks of quadcopters and mobile robots are presented to validate the performance of cooperative localization for state estimation with the continuous or intermittent presence of absolute measurements or their complete absence. Finally, the performance of the control algorithm is evaluated with and without cooperative localization to demonstrate its effectiveness for improving performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call