Abstract

In this paper, we study the consensus problem in multi-vehicle systems, where the information states of all vehicles approach a time-varying reference state under the condition that only a portion of the vehicles (e.g., the unique team leader) have access to the reference state and the portion of the vehicles might not have a directed path to all of the other vehicles in the team. We first analyze a consensus algorithm with a constant reference state using graph theoretical tools. We then propose consensus algorithms with a time-varying reference state and show necessary and sufficient conditions under which consensus is reached on the time-varying reference state. The time-varying reference state can be an exogenous signal or evolve according to a nonlinear model. These consensus algorithms are also extended to achieve relative state deviations among the vehicles. An application example to multi-vehicle formation control is given as a proof of concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.