Abstract

Accurate behavior prediction of other vehicles in the surroundings is critical for intelligent transportation systems. Common practices to reason about the future trajectory are through their historical paths. However, the impact of traffic context is ignored, which means the beneficial environment information is deserted. Although a few methods are proposed to exploit the surrounding vehicle information, they simply model the influence according to spatial relations without considering the temporal information among them. In this paper, a novel multi-vehicle collaborative learning with spatio-temporal tensor fusion model for vehicle trajectory prediction is proposed, which introduces a novel auto-encoder social convolution mechanism and a fancy recurrent social mechanism to model spatial and temporal information among multiple vehicles, respectively. Furthermore, the generative adversarial network is incorporated into our framework to handle the inherent multi-modal characteristics of the agent motion behavior. Finally, we evaluate the proposed multi-vehicle collaborative learning model on NGSIM US-101 and I-80 benchmark datasets. Experimental results demonstrate that the proposed approach outperforms the state-of-the-art for vehicle trajectory prediction. Additionally, we also present qualitative analyses of the multi-modal vehicle trajectory generation and the impacts of surrounding vehicles on trajectory prediction under various circumstances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.