Abstract

A multi-variable adaptive autopilot for the dive-plane control of submarines is designed. The vehicle is equipped with bow and stern hydroplanes for maneuvering. It is assumed that the system parameters are not known, and the disturbance force is acting on the vehicle. Based on a back-stepping design approach, an adaptive control law is derived for the trajectory control of the depth and the pitch angle. To prevent singularity in the control law, the SDU decomposition of the high-frequency gain matrix is used for the design. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories is accomplished. Simulation results are presented which show that the submarine performs dive-plane maneuvers in spite of the uncertainties in the system parameters and disturbance forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.