Abstract
We study the mappings taking real intervals into metric spaces and possessing a bounded generalized variation in the sense of Jordan--Riesz--Orlicz. We establish some embeddings of function spaces, the structure of the mappings, the jumps of the variation, and the Helly selection principle. We show that a compact-valued multi-valued mapping of bounded generalized variation with respect to the Hausdorff metric has a regular selection of bounded generalized variation. We prove the existence of selections preserving the properties of multi-valued mappings that are defined on the direct product of an interval and a topological space, have a bounded generalized variation in the first variable, and are upper semicontinuous in the second variable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.