Abstract

In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush-Kuhn-Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.