Abstract

In this paper, we propose a distributed multi-agent reinforcement learning (MARL) method to learn cooperative searching and tracking policies for multiple unmanned aerial vehicles (UAVs) with limited sensing range and communication ability. Firstly, we describe the system model for multi-UAV cooperative searching and tracking for moving targets and consider average observation rate and average exploration rate as the metrics. Moreover, we propose the information update and fusion mechanisms to enhance environment perception ability of the multi-UAV system. Then, the details of our method are demonstrated, including observation and action space representation, reward function design and training framework based on multi-agent proximal policy optimization (MAPPO). The simulation results have shown that our method has well convergence performance and outperforms other baseline algorithms in terms of average observation rate and average exploration rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.