Abstract
Current multi-document summarization systems can successfully extract summary sentences, however with many limitations including: low coverage, inaccurate extraction to important sentences, redundancy and poor coherence among the selected sentences. The present study introduces a new concept of centroid approach and reports new techniques for extracting summary sentences for multi-document. In both techniques keyphrases are used to weigh sentences and documents. The first summarization technique (Sen-Rich) prefers maximum richness sentences. While the second (Doc-Rich), prefers sentences from centroid document. To demonstrate the new summarization system application to extract summaries of Arabic documents we performed two experiments. First, we applied Rouge measure to compare the new techniques among systems presented at TAC2011. The results show that Sen-Rich outperformed all systems in ROUGE-S. Second, the system was applied to summarize multi-topic documents. Using human evaluators, the results show that Doc-Rich is the superior, where summary sentences characterized by extra coverage and more cohesion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Science and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.