Abstract

Multi-tissue constrained spherical deconvolution (MT-CSD) leverages the characteristic b-value dependency of each tissue type to estimate both the apparent tissue densities and the white matter fiber orientation distribution function from diffusion MRI data. In this work, we generalize MT-CSD to tensor-valued diffusion encoding with arbitrary b-tensor shapes. This enables the use of data encoded with mixed b-tensors, rather than being limited to the subset of linear (conventional) b-tensors. Using the complete set of data, including all b-tensor shapes, provides a categorical improvement in the estimation of apparent tissue densities, fiber ODF, and resulting tractography. Furthermore, we demonstrate that including multiple b-tensor shapes in the analysis provides improved contrast between tissue types, in particular between gray matter and white matter. We also show that our approach provides high-quality apparent tissue density maps and high-quality fiber tracking from data, even with sparse sampling across b-tensors that yield whole-brain coverage at 2 mm isotropic resolution in approximately 5:15 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.