Abstract

Rainfall erosivity, a measure of the potential for soil erosion by water, is an important factor for estimating soil loss. Understanding the variation tendency of rainfall erosivity is especially critical for soil and water conservation in the fragile ecological environment of the karst region in southern China. This study analysed the rainfall erosivity at multiple spatial and temporal scales based on daily rainfall data observed at 223 meteorological stations during the period of 1960–2017. A daily rainfall erosivity model, co-kring interpolation, regression analysis, gravity model and the Mann-Kendall test were applied in the analysis process. The results indicate the following: (i) The mean annual rainfall erosivity is 5130.00 MJ·mm·ha−1·h−1 in southern China, with a range of 3964.24 to 6425.87 MJ·mm·ha−1·h−1, and varies greatly among different provinces. (ii) The magnitude of rainfall erosivity varies unevenly among seasons, with the mean rainfall erosivity in summer being almost 15 times higher than that in winter. (iii) The annual and seasonal rainfall erosivity has increased in the karst region of southern China over the past 58 years, whereas at the province scale, the seasonal trend in rainfall erosivity is more complex, and the trends are not necessarily linear and positive. Furthermore, at the interdecadal scale, there is no regular trend, and the data exhibit considerable variation. (iv) The temporal variation characteristics of erosivity density are basically consistent with those of rainfall erosivity, and the two show a significant high correlation. (v) The gravity centre of annual rainfall erosivity is located in Tongdao County, while the monthly gravity centre has shifted across Guangxi, Hunan and Guizhou. In summary, knowledge of rainfall erosivity patterns is valuable for assessing the risk of soil erosion and formulating countermeasures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.