Abstract

A fast and effective service restoration algorithm allowing multi-tier or system-wide switching and capacitor control actions is developed for large-scale, radial distribution networks. The service restoration problem is formulated as a constrained multiple-objective optimization problem. A solution algorithm designed to consider networks with predominately manual switches is developed which utilizes information calculated from three-phase power flow analysis to restore as much priority and total load as possible while requiring a minimal number of control actions and amount of geographic travel distance. Simulation results are presented for a 399 bus distribution network and compared to the service restoration algorithm which avoided multi-tier switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.