Abstract

Cellular-connected unmanned aerial vehicles (UAVs) present a viable solution to address communication and navigation limitations by leveraging base stations for air–ground communication. However, in complex urban scenarios with stringent communication requirements, achieving asymmetrical control becomes crucial to strike a balance between communication reliability and flight safety. Moreover, existing cellular-connected UAV trajectory planning algorithms often struggle to handle real scenes with sudden and intricate obstacles. To address the aforementioned challenges, this paper presents the multi-tier trajectory planning method (MTTP), which takes into account air–ground communication service assurance and collision avoidance in intricate urban environments. The proposed approach establishes a flight risk model that accounts for both the outage probability of UAV-ground base station (GBS) communication and the complexity of flight environments, and transforms the inherently complex three-dimensional (3D) trajectory optimization problem into a risk distance minimization model. To optimize the flight trajectory, a hierarchical progressive solution approach is proposed, which combines the strengths of the heuristic search algorithm (HSA) and deep reinforcement learning (DRL) algorithm. This innovative fusion of techniques empowers MTTP to efficiently navigate complex scenarios with sudden obstacles and communication challenges. Simulations show that the proposed MTTP method achieves a more superior performance of trajectory planning than the conventional communication-based solution, which yields a substantial reduction in flight distance of at least 8.49% and an impressive 10% increase in the mission success rate. Furthermore, a real-world scenario is chosen from the Yuhang District, Hangzhou (a southern Chinese city), to validate the practical applicability of the MTTP method in highly complex operating scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call