Abstract
This study introduces Multi-Threshold Recurrence Rate Plots (MTRRP), a novel methodology for analyzing dynamic patterns in complex systems, such as those influenced by neurodegenerative diseases in brain activity. MTRRP characterizes how recurrence rates evolve with increasing recurrence thresholds. A key innovation of our approach, Recurrence Complexity, captures structural complexity by integrating local randomness and global structural features through the product of Recurrence Rate Gradient and Recurrence Hurst, both derived from MTRRP. We applied this technique to resting-state EEG data from patients diagnosed with Alzheimer's Disease (AD), Frontotemporal Dementia (FTD), and age-matched healthy controls. The results revealed significantly higher recurrence complexity in the occipital areas of AD and FTD patients, particularly pronounced in the Alpha and Beta frequency bands. Furthermore, EEG features derived from MTRRP were evaluated using a Support Vector Machine with leave-one-out cross-validation, achieving a classification accuracy of 87.7%. These findings not only underscore the utility of MTRRP in detecting distinct neurophysiological patterns associated with neurodegenerative diseases but also highlight its broader applicability in time series analysis, providing a substantial tool for advancing medical diagnostics and research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.