Abstract

In this article, we present an inertial switch with three threshold levels, which can provide quantitative acceleration measurements and detect the acceleration direction in the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x–y</i> plane. The designed device has four movable electrodes attached to the proof mass (one at every side of the square proof mass) and 12 flexible stationary electrodes (three on each side). When the device is subjected to an acceleration input, the movable electrode can contact one or more of the 12 stationary electrodes based on the acceleration magnitude and direction. The acceleration direction can be determined by identifying the individual electrical switches that are activated. The designed switch is simulated using a finite-element model under different acceleration signals of various magnitudes and directions. A device prototype has been fabricated using the SOIMUMPs process and has been tested by a drop-table system under various shock accelerations in different directions. The experimental and simulation results show good agreement indicating that the acceleration direction detection accuracy and resolution improve with the increase in the number of used electrical switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.