Abstract

Dense linear algebra libraries, such as BLAS and LAPACK, provide a relevant collection of numerical tools for many scientific and engineering applications. While there exist high performance implementations of the BLAS (and LAPACK) functionality for many current multi-threaded architectures, the adaption of these libraries for asymmetric multicore processors (AMPs) is still pending. In this paper we address this challenge by developing an asymmetry-aware implementation of the BLAS, based on the BLIS framework, and tailored for AMPs equipped with two types of cores: fast/power-hungry versus slow/energy-efficient. For this purpose, we integrate coarse-grain and fine-grain parallelization strategies into the library routines which, respectively, dynamically distribute the workload between the two core types and statically repartition this work among the cores of the same type.Our results on an ARM® big.LITTLE™ processor embedded in the Exynos 5422 SoC, using the asymmetry-aware version of the BLAS and a plain migration of the legacy version of LAPACK, experimentally assess the benefits, limitations, and potential of this approach from the perspectives of both throughput and energy efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.