Abstract

This article adopts MapReduce and multi-targeted ant colony algorithm (ACO) distribution in parallel to solve large-scaled service dynamic selection in SaaS and puts forward a service dynamic selection algorithm based on these technologies. The algorithm integrates cloud calculation technologies such as loading strategy, ACO, MapReduce, and HDFS, which deploys the service to servers as little as possible, to further save the energy target. Meanwhile, it also takes into account the smallest price target deployment and server loading balancing target, which transforms the global optimisation service dynamic selection into a multi-targeted service combination optimisation problem with QoS restriction. The simulation experiments verify and prove the feasibility, effectiveness and convergence of the improved algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.