Abstract

Generating orchards spatial distribution maps within a heterogeneous landscape is challenging and requires fine spatial and temporal resolution images. This study examines the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) satellite data of relatively high spatial and temporal resolutions for discriminating major orchards in the Khairpur district of the Sindh province, Pakistan using machine learning methods such as random forest (RF) and a support vector machine. A Multicollinearity test (MCT) was performed among the multi-temporal S1 and S2 variables to remove those with high correlations. Six different feature combination schemes were tested, with the fusion of multi-temporal S1 and S2 (scheme-6) outperforming all other combination schemes. The spectral separability between orchards pairs was assessed using Jeffries-Matusita (JM) distance, revealing that orchard pairs were completely separable in the multi-temporal fusion of both sensors, especially the indistinguishable pair of dates-mango. The performance difference between RF and SVM was not significant, SVM showed a slightly higher accuracy, except for scheme-4 where RF performed better. This study concludes that multi-temporal fusion of S1 and S2 data, coupled with robust ML methods, offers a reliable approach for orchard classification. Prospectively, these findings will be helpful for orchard monitoring, improvement of yield estimation and precision based agricultural practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call