Abstract

This paper presents a multi-temporal formulation for simulating elastoplastic solids under cyclic loading. We leverage the proper generalized decomposition (PGD) to decompose the displacements into multiple time scales, separating the spatial and intra-cyclic dependence from the inter-cyclic variation. In contrast with the standard incremental approach, which solves the (non-linear and computationally intensive) mechanical balance equations at every time step, the proposed PGD approach allows the mechanical balance equations to be solved exclusively for the small-time intra-cyclic response, while the large-time inter-cyclic response is described by simple scalar algebraic equations. Numerical simulations exhibiting complex cyclic responses, including a 2D problem and an application to a monopile foundation, demonstrate that PGD solutions with a limited number of space–time degrees of freedom may be obtained numerically, only requiring a few modes to accurately capture the reference response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call