Abstract

AbstractChange analysis of rock glaciers is crucial to analyzing the adaptation of surface and subsurface processes to changing environmental conditions at different timescales because rock glaciers are considered as potentially unstable slopes and solid water reservoirs. To quantify surface change in complex surface topographies with varying surface orientation and roughness, a full three‐dimensional (3D) change analysis is required. This study therefore proposes a novel approach for accurate 3D point cloud‐based quantification and analysis of geomorphological activity on rock glaciers. It is applied to the lower tongue area of the Äußeres Hochebenkar rock glacier, Ötztal Alps, Austria. Multi‐temporal and multi‐source topographic LiDAR data are used to quantify surface changes and to reveal their spatial and temporal characteristics at different timescales within the period 2006–2018. LiDAR‐based examinations are complemented with subsurface characteristics obtained from electrical resistivity tomography. This combined approach reveals active and variable spatial and temporal surface dynamics in the investigated area, with minimum detectable change between 0.09 and 0.65 m at 95% confidence. Given that this approach overcomes current uncertainties in established methods of differentiating complex rock glacier surfaces, we consider it a valuable addition that can be applied to objects of similar properties such as landslides or glaciers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.