Abstract

BackgroundImage denoising technology removes noise from the corrupted image by utilizing different features between image and noise. Convolutional neural network (CNN)-based algorithms have been the concern of the recent progress on diverse image restoration problems and become an efficient solution in image denoising.ObjectiveAlthough a quite number of existing CNN-based image denoising methods perform well on the simplified additive white Gaussian noise (AWGN) model, their performance often degrades severely on the real-world noisy images which are corrupted by more complicated noise.MethodsIn this paper, we utilized the multi-task learning (MTL) framework to integrate multiple loss functions for collaborative training of CNN. This approach aims to improve the denoising performance of CNNs on real-world images with non-Gaussian noise. Simultaneously, to automatically optimize the weights of individual sub-tasks within the MTL framework, we incorporated a self-learning weight layer into the CNN.ResultsExtensive experiments demonstrate that our approach effectively enhances the denoising performance of CNN-based image denoising algorithms on real-world images. It reduces excessive image smoothing, improves quantitative metrics, and enhances visual quality in the restored images.ConclusionOur method shows the effectiveness of the improved performance of denoising CNNS for real-world image denoising processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call