Abstract
In general, artery-specific calcification analysis comprises the simultaneous calcification segmentation and quantification tasks. It can help provide a thorough assessment for calcification of different coronary arteries, and further allow for an efficient and rapid diagnosis of cardiovascular diseases (CVD). However, as a high-dimensional multi-type estimation problem, artery-specific calcification analysis has not been profoundly investigated due to the intractability of obtaining discriminative feature representations. In this work, we propose a Multi-task learning network with Multi-view Weighted Fusion Attention (MMWFAnet) to solve this challenging problem. The MMWFAnet first employs a Multi-view Weighted Fusion Attention (MWFA) module to extract discriminative feature representations by enhancing the collaboration of multiple views. Specifically, MWFA weights these views to improve multi-view learning for calcification features. Based on the fusion of these multiple views, the proposed approach takes advantage of multi-task learning to obtain accurate segmentation and quantification of artery-specific calcification simultaneously. We perform experimental studies on 676 non-contrast Computed Tomography scans, achieving state-of-the-art performance in terms of multiple evaluation metrics. These compelling results evince that the proposed MMWFAnet is capable of improving the effectivity and efficiency of clinical CVD diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.