Abstract
Virtual flow metering (VFM) is a cost-effective and non-intrusive technology for inferring multiphase flow rates in petroleum assets. Inferences about flow rates are fundamental to decision support systems that operators extensively rely on. Data-driven VFM, where mechanistic models are replaced with machine learning models, has recently gained attention due to its promise of lower maintenance costs. While excellent performances in small sample studies have been reported in the literature, there is still considerable doubt about the robustness of data-driven VFM. In this paper, we propose a new multi-task learning (MTL) architecture for data-driven VFM. Our method differs from previous methods in that it enables learning across oil and gas wells. We study the method by modeling 55 wells from four petroleum assets and compare the results with two single-task baseline models. Our findings show that MTL improves robustness over single-task methods, without sacrificing performance. MTL yields a 25%–50% error reduction on average for the assets where single-task architectures are struggling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.