Abstract
Vascular landmark detection plays an important role in medical analysis and clinical treatment. However, due to the complex topology and similar local appearance around landmarks, the popular heatmap regression based methods always suffer from the landmark confusion problem. Vascular landmarks are connected by vascular segments and have special spatial correlations, which can be utilized for performance improvement. In this paper, we propose a multi-task global optimization-based framework for accurate and automatic vascular landmark detection. A multi-task deep learning network is exploited to accomplish landmark heatmap regression, vascular semantic segmentation, and orientation field regression simultaneously. The two auxiliary objectives are highly correlated with the heatmap regression task and help the network incorporate the structural prior knowledge. During inference, instead of performing a max-voting strategy, we propose a global optimization-based post-processing method for final landmark decision. The spatial relationships between neighboring landmarks are utilized explicitly to tackle the landmark confusion problem. We evaluated our method on a cerebral MRA dataset with 564 volumes, a cerebral CTA dataset with 510 volumes, and an aorta CTA dataset with 50 volumes. The experiments demonstrate that the proposed method is effective for vascular landmark localization and achieves state-of-the-art performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.