Abstract
In this paper, we propose a novel framework for ASD diagnosis using structural magnetic resonance imaging (MRI). Our method deals explicitly with the distributional differences of gray matter (GM) and white matter (WM) features extracted from MR images. We project linearly the GM and WM features onto a canonical space where their correlations are mutually maximized. In this canonical space, features that are highly correlated with the class labels are selected for ASD diagnosis. In addition, graph matching is employed to preserve the geometrical relationships between samples when projected onto the canonical space. Our evaluations based on a public ASD dataset show that the proposed method outperforms all competing methods on all clinically important measures in differentiating ASD patients from healthy individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.