Abstract

A global predictive model was developed for protein, moisture, and grain type, using near infrared (NIR) spectra. The model is a deep convolutional neural network, trained on NIR spectral data captured from wheat, barley, field pea, and lentil whole grains. The deep learning model performs multi-task learning to simultaneously predict grain protein, moisture, and type, with a significant reduction in prediction errors compared to linear approaches (e.g., partial least squares regression). Moreover, it is shown that the convolutional network architecture learns much more efficiently than simple feedforward neural network architectures of the same size. Thus, in addition to improved accuracy, the presented deep network is very efficient to implement, both in terms of model development time, and the required computational resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call