Abstract

IntroductionWith the escalating menace of organic compounds in environmental pollution imperiling the survival of aquatic organisms, the investigation of organic compound toxicity across diverse aquatic species assumes paramount significance for environmental protection. Understanding how different species respond to these compounds helps assess the potential ecological impact of pollution on aquatic ecosystems as a whole. Compared with traditional experimental methods, deep learning methods have higher accuracy in predicting aquatic toxicity, faster data processing speed and better generalization ability. ObjectivesThis article presents ATFPGT-multi, an advanced multi-task deep neural network prediction model for organic toxicity. MethodsThe model integrates molecular fingerprints and molecule graphs to characterize molecules, enabling the simultaneous prediction of acute toxicity for the same organic compound across four distinct fish species. Furthermore, to validate the advantages of multi-task learning, we independently construct prediction models, named ATFPGT-single, for each fish species. We employ cross-validation in our experiments to assess the performance and generalization ability of ATFPGT-multi. ResultsThe experimental results indicate, first, that ATFPGT-multi outperforms ATFPGT-single on four fish datasets with AUC improvements of 9.8%, 4%, 4.8%, and 8.2%, respectively, demonstrating the superiority of multi-task learning over single-task learning. Furthermore, in comparison with previous algorithms, ATFPGT-multi outperforms comparative methods, emphasizing that our approach exhibits higher accuracy and reliability in predicting aquatic toxicity. Moreover, ATFPGT-multi utilizes attention scores to identify molecular fragments associated with fish toxicity in organic molecules, as demonstrated by two organic molecule examples in the main text, demonstrating the interpretability of ATFPGT-multi. ConclusionIn summary, ATFPGT-multi provides important support and reference for the further development of aquatic toxicity assessment. All of codes and datasets are freely available online at https://github.com/zhaoqi106/ATFPGT-multi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call