Abstract

Non-small cell lung cancer (NSCLC) is a complex malignancy with a high degree of heterogeneity, representing approximately 85% of all lung cancer cases. The treatment landscape for NSCLC has been revolutionised by incorporating targeted and immunotherapies; however, novel therapeutic modalities are consistently needed to enhance the treatment outcomes. Indeed, alternative anti-cancer therapies involving natural products have drawn the attention of clinicians and scientists owing to their remarkable chemopreventive potential, often displaying minimal toxicity. D-carvone (CN) is one such natural product that has exhibited numerous promising therapeutic benefits, yet its efficacy against NSCLC remains enigmatic. In the present study, network pharmacological studies and molecular docking in conjunction with in-vitro validation were used to elucidate the underlying mechanism of action of CN comprehensively. Different databases revealed a total of 77 putative anti-NSCLC targets of CN. The identified core targets were utilised to construct a “Compound- Target- Disease” network by Cytoscape (v3.9.0). Further analysis identified 5 core/ hub targets of CN including JAK2, ERK1, ESR1, GSK3B and HSP90AA1. Molecular docking indicated a strong binding interaction of the compound with these core targets. Also, Gene Ontology and KEGG analysis validated the involvement of multiple biological processes. Additionally, CN significantly inhibited cell proliferation, clonogenicity, and wound healing potential while promoting apoptosis in a dose-dependent manner in H1299 and A549 cell lines as examined by flow cytometry, morphological assessment, and western blotting. In conclusion, this study delineates the therapeutic effects of CN on NSCLC, thus highlighting CN as a putative drug candidate for further analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call