Abstract

In this paper, we address the problem of multi-target detection and tracking over a network of separately located Doppler-shift measuring sensors. For this challenging problem, we propose to use the probability hypothesis density (PHD) filter and present two implementations of the PHD filter, namely the sequential Monte Carlo PHD (SMC-PHD) and the Gaussian mixture PHD (GM-PHD) filters. Performances of both filters are carefully studied and compared for the considered challenging tracking problem. Simulation results show that both PHD filter implementations successfully track multiple targets using only Doppler shift measurements. Moreover, as a proof-of-concept, an experimental setup consisting of a network of microphones and a loudspeaker was prepared. Experimental study results reveal that it is possible to track multiple ground targets using acoustic Doppler shift measurements in a passive multi-static scenario. We observed that the GM-PHD is more effective, efficient and easy to implement than the SMC-PHD filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.