Abstract
There has been an unprecedented increase in the growth of photonic components over the last 25 years based on different photonic materials; each having structural/functional limitation in integrated devices. The challenge is that the semiconductors are grown inside MBE chambers, whereas the polymeric waveguides are fabricated by spin-coating. By comparison, glass and crystal-based materials are processed via sputtering and sol-gel techniques. None of these materials processing techniques, therefore, are compatible for a single-step device fabrication, due to the incompatibilities of chemical and physical properties of individual materials. A solution for overcoming the materials limitation is to develop a multi-materials deposition chamber which allows sequential/heterostructure growth on a substrate, without compromising the structural, spectroscopic, and device performances. The rare-earth-ion doped glass- and crystal-based devices are pumped with semiconductor lasers, suggesting that the glass-semiconductor devices might perform better when structurally integrated which may also help in reducing the pump-power for achieving efficient population inversion. We explain the applications of PLD for controlling the structure of thin-films grown on inorganic and metallic substrates for photonic device and photo-active coatings for biological applications, respectively. Examples of materials deposited on dissimilar substrates are discussed with applications such as photonic devices and photo-bioactive surfaces for sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.