Abstract

The rapid growth of Vehicular Ad-hoc Networks (VANET), fueled by advancements in the Internet-of-Things, cloud computing, Intelligent Transportation Systems, and fog computing, has led to the introduction of fog node-based VANET to serve resource-constrained devices. In the traditional security models of VANET, due to the use of a centralized trusted authority, there is a chance of single-point-of-failure and service unavailable with the increased service access requests. Also, there was one-to-one communication between each roadside unit and trusted authority. This may increase the system complexity and increase the traffic load. To address these issues, a novel authentication protocol for fog-enabled VANET based on multiple trusted authority model is discussed which reduces the chance of service unavailability and single-point-of-failure as the entire traffic load is distributed among multiple sub-trusted authority. Due to the incorporation of fog node, a group of roadside units can be controlled centrally, where trusted authority does not need to perform individual authentication for each roadside unit. The proposed protocol's security is rigorously examined through both informal and formal security analysis. Additionally, the protocol exhibits enhanced security features, as demonstrated in a performance comparison section, showcasing its ability to meet the security and privacy requirements while incurring relatively low communication and computation and storage costs. Thus, the proposed protocol offers a secure and efficient authentication protocol for fog-enabled VANET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call