Abstract

An MPEG-2 AAC Huffman decoding method based on the fixed length compacted codeword tables, where each codeword can contain multiple number of Huffman codes, was proposed. The proposed method enhances the searching efficiency by finding multiple symbols in a single search, i.e., a direct memory reading of the compacted codeword table. The memory usage is significantly saved by separately handling the Huffman codes that exceed the length of the compacted codewords. The trade-off relation between the computational complexity and the amount of memory usage was analytically derived to find the proper codeword length of the compacted codewords for the design of MPEG-2 AAC decoder. To validate the proposed algorithm, its performance was experimentally evaluated with an implemented MPEG-2 AAC decoder. The results showed that the computational complexity of the proposed method is reduced to 54% of that of the most up-to-date method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.