Abstract

Bare bones PSO is a simple swarm optimization approach that uses a probability distribution like Gaussian distribution in the position update rules. However, due to its nature, Bare bones PSO is highly prone to premature convergence and stagnation. The characteristics of the probability distribution functions used in the update rule have a tense impact on the performance of the bare bones PSO. As a result, this paper investigates the use of different methods for estimating the probability distributions used in the update rule. Four methods or strategies are developed that are using Gaussian or multivariate Gaussian distributions. The choice of an appropriate updating strategy for each particle greatly depends on the characteristics of the fitness landscape that surrounds the swarm. To deal with issue, the cellular learning automata model is incorporated with the proposed bare bones PSO, which is able to adaptively learn suitable updating strategies for the particles. Through the interactions among its elements and the learning capabilities of its learning automata, cellular learning automata gradually learns to select the best updating rules for the particles based on their surrounding fitness landscape. This paper also, investigates a new and simple method for adaptively refining the covariance matrices of multivariate Gaussian distributions used in the proposed updating strategies. The proposed method is compared with some other well-known particle swarm approaches. The results indicate the superiority of the proposed approach in terms of the accuracy of the achieved results and the speed in finding appropriate solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.