Abstract

Among tRNA modification enzymes there is a correlation between specificity for multiple tRNA substrates and heteromultimerization. In general, enzymes that modify a conserved residue in different tRNA sequences adopt a heterodimeric structure. Presumably, such changes in the oligomeric state of enzymes, to gain multi-substrate recognition, are driven by the need to accommodate and catalyze a particular reaction in different substrates while maintaining high specificity. This review focuses on two classes of enzymes where the case for multimerization as a way to diversify molecular recognition can be made. We will highlight several new themes with tRNA methyltransferases and will also discuss recent findings with tRNA editing deaminases. These topics will be discussed in the context of several mechanisms by which heterodimerization may have been achieved during evolution and how these mechanisms might impact modifications in different systems.

Highlights

  • Critical to substrate binding specificity is the fact that enzymes need to achieve “high” affinity for their targets while ignoring non-targets

  • In a previous model based on observations with tRNA deaminases, it was suggested that homodimerization was necessary for the bacterial adenosine to inosine (A-to-I) deaminase to recognize a single tRNAArg substrate (Ragone et al, 2011; Spears et al, 2011)

  • Such is the case of the eukaryotic tRNA deaminase ADAT2/ADAT3, for which the two subunits are very similar but not identical, strongly arguing for a gene duplication event that led to functional differentiation of each subunit

Read more

Summary

Introduction

Critical to substrate binding specificity is the fact that enzymes need to achieve “high” affinity for their targets while ignoring non-targets. Certain eukaryotic tRNA methyltransferases strictly function as two-subunit enzymes: where association between a structural and a catalytic subunit is required for tRNA methylation (Figure 1).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call