Abstract

Change detection is an important task in remote sensing image processing and analysis. However, due to position errors and wind interference, bi-temporal low-altitude remote sensing images collected by SUAVs often suffer from different viewing angles. The existing methods need to use an independent registration network for registration before change detection, which greatly reduces the integrity and speed of the task. In this work, we propose an end-to-end network architecture RegCD-Net to address change detection problems in the bi-temporal SUAVs’ low-altitude remote sensing images. We utilize global and local correlations to generate an optical flow pyramid and realize image registration through layer-by-layer optical flow fields. Then we use a nested connection to combine the rich semantic information in deep layers of the network and the precise location information in the shallow layers and perform deep supervision through the combined attention module to finally achieve change detection in bi-temporal images. We apply this network to the task of change detection in the garbage-scattered areas of nature reserves and establish a related dataset. Experimental results show that our RegCD-Net outperforms several state-of-the-art CD methods with more precise change edge representation, relatively few parameters, fast speed, and better integration without additional registration networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.