Abstract
In recent years, rotating machinery fault diagnosis methods based on convolutional neural network have achieved much success. However, in real industrial environments, interfering signals are unavoidable, which may reduce the accuracy of fault diagnosis seriously. Most of the current fault diagnosis methods are of single input type, which may lead to the information contained in the vibration signal not being fully utilized. In this study, theoretical analysis and comprehensive comparative experiments are completed to investigate the time domain input, frequency domain input, and two types of time–frequency domain input. Based on this, a new fault diagnosis model, named multi-stream convolutional neural network, is developed. The model takes the time domain, frequency domain, and time–frequency domain images as input, and it automatically fuses the information contained in different inputs. The proposed model is tested based on three public datasets. The experimental results suggested that the model achieved pretty high accuracy under noise and trend items without the help of signal separation algorithms. In addition, the positive implications of multiple inputs and information fusion are analyzed through the visualization of learned features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.