Abstract

We assessed whether dietary administration of a multi-strain probiotic (Exiguobacterium JHEb1, Vibrio JH1 and Enterococcus JHLDc) lead to enhanced immune responsiveness in juvenile New Zealand black-footed abalone (Haliotis iris). Two groups of abalone were fed (1% body weight per day) over a four-month period with different diets. The control diet consisted of a standard commercial pellet feed (AbMax 16), whereas the treatment diet was additionally enriched with the probiotic mix. At the end of the experiment, probiotic-fed animals showed improved growth compared with control-fed abalone in length (32.3% vs 22.3%), width (31.9% vs 20.7%) and wet weight (109.6% vs 72.8%), respectively. Haemolymph sampling was conducted at the beginning of the experiment and after 2 and 4 months. Haemolymph samples were analysed for total haemocyte count (THC) and viability, presence of apoptotic cells and production of Reactive Oxygen Species (ROS). Compared with control abalone, probiotic-fed abalone had significantly higher THC (1.9 × 106 vs 5.6 × 105 cells), higher viability (90.8% vs 75.6%), higher percentage of ROS-positive cells (19.4% vs 0.5%) and higher numbers of non-apoptotic cells (88.0% vs 78.0%), respectively. These results indicate that the probiotic-enriched diet enhanced the immunostimulatory mechanisms, with a simultaneous low-level up-regulation of ROS production as a priming mechanism of the antibacterial defence system. Metabolomics-based profiling of foot muscle tissue additionally revealed that probiotic-fed abalone differentially expressed 17 unique metabolites, including amino acids, fatty acids and TCA cycle related compounds. These data suggest that the probiotic-supplemented diet can also alter central carbon metabolic processes, which may improve the survival, as well as the growth of abalone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call