Abstract

The Glauber dynamics of a bond-diluted Ising model on a Bethe lattice (a random graph with fixed connectivity) is investigated by an approximate theory which provides exact results for equilibrium properties. The time-dependent solutions of the dynamical system derived by this method are in good agreement with the results obtained by Monte Carlo simulations in almost all situations. Furthermore, the derived dynamical system exhibits a remarkable phenomenon that the magnetization shows multi-step relaxations at intermediate time scales in a low-temperature part of the Griffiths phase without bond percolation clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.