Abstract
Image segmentation technology has made a remarkable effect in medical image analysis and processing, which is used to help physicians get a more accurate diagnosis. Manual segmentation of the medical image requires a lot of effort by professionals, which is also a subjective task. Therefore, developing an advanced segmentation method is an essential demand. We propose an end-to-end segmentation method for medical images, which mimics physicians delineating a region of interest (ROI) on the medical image in a multi-step manner. This multi-step operation improves the performance from a coarse result to a fine result progressively. In this paper, the segmentation process is formulated as a Markov decision process and solved by a deep reinforcement learning (DRL) algorithm, which trains an agent for segmenting ROI in images. The agent performs a serial action to delineate the ROI. We define the action as a set of continuous parameters. Then, we adopted a DRL algorithm called deep deterministic policy gradient to learn the segmentation model in continuous action space. The experimental result shows that the proposed method has 7.24% improved to the state-of-the-art method on three prostate MR data sets and has 3.52% improved on one retinal fundus image data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Ambient Intelligence and Humanized Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.