Abstract

There are currently extended experimental and theoretical developments of spin crossover nanomaterials, in particular based on coordination polymers for the design of smart applications. In this context, we have reproduced a three step thermal transition in a cubic spin crossover nanomaterial with a system dimension of 5 × 5 × 5 metallic centers. For this purpose, we have calculated, using Monte Carlo Entropic Sampling technique, the density of states of all possible system configurations. In order to take into account the local environment, we have included an additional interaction term in the standard Ising like model. We have then analyzed the role of this new interaction as well as the system size effect variation (from 4 × 4 × 4 to 6 × 6 × 6 metallic centers). Comparison with a 2D SCO system shows that the spin transition still proceeds in three steps but is no longer hysteretic.

Highlights

  • There are currently extended experimental and theoretical developments of spin crossover nanomaterials, in particular based on coordination polymers for the design of smart applications

  • In order to take into account the local environment, we have included an additional interaction term in the standard Ising like model

  • The potential applications of spin crossover (SCO) materials as temperature and pressure sensors [1–3], actuators, memory devices or electrical switches [4] and their possible spin state control at the molecular level are some important assets of these fascinating switching materials

Read more

Summary

Introduction

The potential applications of spin crossover (SCO) materials as temperature and pressure sensors [1–3], actuators, memory devices or electrical switches [4] and their possible spin state control at the molecular level are some important assets of these fascinating switching materials. SCO coordination compounds display a central metallic ion in an octahedral environment. The transition between the two spin states can be induced by applying external perturbations such as: a temperature variation, external pressure, light irradiation, magnetic or electrical field or by a chemical adsorption-desorption phenomenon [5–10]. It is nowadays commonly accepted that this type of switching phenomenon results from a synergistic effect between intramolecular interactions resulting from the strong bonding between metallic centres favoring an antiferromagnetic-like state (LS-HS-LS-HS,...) and intermolecular interactions of elastic. 2 2ofo8f 8 elastic origin favoring domains with the same spin sate (ferromagnetic‐like). LHinaamreilstoent iaaln. [,2w8]hiimchptrhoevyedsutchciessmsfoudlleylabpypilnietdrotdou1cDingSCaOlocnhgarinans.gUe nindteerrathcteisoencionntdhietioHnasmhiyltsotenrieatnic, wsphiinchtrtahnesyitsiuocncseossrftuwlloy satpepplisepdintotr1aDnsSitCioOnschwaeinres.cUovnedreerdth[2e9s]e. cInon2d0i1t5io, nCshhiryusttaereettiacl.s[p3i0n] tirnatnrosdituiocnesd oarntwewo tsetermp sipnitnhteraHnasmitiioltnosnwiaenr,ebcyocvoenresdid[e2r9in].gIna n20e1w5,eClahsitricuitnateetraalc.t[i3o0n]binettrwoedeunceeddgaenmewetatellrimc ciennttheres Hwaimthiltthoeniiranlo, cbayl ceonnvsiirdoenrminegnat.nTewhiselsatsetpic ainlltoewraecdtiornepbreotwdueceinngedmgeumltie‐sttaelplictcreanntseitrisownsithfotrhe1iDr loScCaOl esnyvsitreomnsm. eInnt.adTdhiistiostne,pCahllioruwteaderteapl.ro[d31u]cipnegrfmorumltei-dstethpetorraentsicitailonstsufdoire1sDthSaCt Ohisgyhsltiegmhtse.dInthaeddroitlieono,f Cshhoirrut‐taanetdallo.n[g31‐r]apnegrefoinrmtereadcttihoenosrfeotricsaylsstteumdimesettahlalitchciegnhtelirgshwteidthtpheeriroodleicocfosnhdoirtito- nasn.dThloenygs-hroanwgeed itnhtaetratchteiolnosngforrasnygseteimntemraecttailolinc pceanratemrsetweritihs ptheeriobdasiciscoofnhdyitsitoenrse.tiTchsepyinshtroawnseidtiothnast, wthheilloentgherasnhgoert irnatnergaectiinotnerpacatriaomn eptaerraims ethteer bisastihseobfahsyisstoefretwticosspteinp ttrraannssiittiioonnss,. wIt hwilaesthalesoshdoermt roannsgtreatiendtetrhaacttiothne peadrgaemeeftfeerctisisthaet tbhaesiosriogfintwoof msteupltit‐rsatenpsittiroannss.itiIotnws,aesvaelnsoifdtehme omnesttarlaltiecdcetnhtaetrsthaereedfigxeedefifnectthies HatS tshteatoeri[g3i2n] oofrmaureltia-csttievpetrmanetsailtliiocncse, nevteerns itfhtahteinmteertaalclticwceitnhtetrhseairreloficxaeldeninvitrhoenHmSenstta[t3e0[,3332]]. oOr tahreer aicmtipvoermtaenttaltlhiceocreenttiecrasl trheasut litnstewraecrtewreitphotrhteedir cloocnaslideenrvinirgonsmysetnemt [s30a,r3c3h]i.tOectthuerreim[34p]oortranmtotlheecourleetisciazle reefsfuelcttssw[3e1r,e3r5e,3p6o]r.teInd cthoensciduerrreinngt saycsctoeumnst,awrcehicteocntsuirdee[r34th]eorinmflouleencuceleosfizieneteffreaccttsio[n31b,3e5t,w36e]e.nInetdhgee cmurerteanllticaccceonutnert,swweitchotnhseidirelrotchael iennflvuireonncme oefnitnftoerradcitfifoenrebnettwarecehniteedctgueremseitnal2liDc caenndte3rDs wSCithOtmheaitrelroicaalsl. environment for different architectures in 2D and 3D SCO materials

Materials and Methods
Monte Carlo Entropic Sampling
Results and Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.