Abstract

Although stainless steels (SSs) have excellent general corrosion resistance, they are nevertheless susceptible to pitting corrosion. The variation of pit depth and density is significant for the prediction of likelihood of corrosion damage occurring in service. Among the available pitting corrosion models, it is difficult to identify a specific model capable of characterizing all the pit formation processes observed and one that can be used for estimating the evolution of pit density distribution with time. A physics-based multi-state Markov model giving a full description of pitting corrosion states is presented. The transition rates used in the model are determined by fitting the model to experimental data. The variation of pit depth and density is simulated. The simulation is verified by experimental scenarios of SS exposed to chloride-containing environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.