Abstract

AbstractGlassy and liquid state metal–organic frameworks (MOFs) are emerging type of materials subjected to intense research for their rich physical and chemical properties. In this report, we obtained the first glassy MOF that involves metal‐carboxylate cluster building units via multi‐stage structural transformations. This MOF is composed of linear [Mn3(COO)6] node and flexible pyridyl‐ethenylbenzoic linker. The crystalline MOF was first perturbed by vapor hydration and thermal dehydration to give an amorphous state, which can go through a glass transition at 505 K into a super‐cooled liquid. The super‐cooled liquid state is stable through a wide temperature range of 40 K and has the largest fragility index of 105, giving a broad processing window. Remarkably, the super‐cooled liquid can not only be quenched into glass, but also recrystallize into the initial MOF when heated to a higher temperature above 558 K. The mechanism of the multi‐stage structural transformations was studied by systematic characterizations of in situ X‐ray diffraction, calorimetry, rheological, spectroscopic and pair‐distribution function analysis. These multi‐stage transformations not only represent a rare example of high temperature coordinative recognition and self‐assembly, but also provide new MOF processing strategy through crystal‐amorphous‐liquid‐crystal transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.