Abstract

Carboniferous coals of the Ayrshire Coalfield are enriched in selenium (Se) relative to average UK and world compositions, substituting for sulphur in pyrite. Greenburn surface mine coals are characterized by syngenetic concretionary pyrite ( c. 15% total area), occurring as bedding-parallel banding, and later-formed (epigenetic) cross-cutting pyrite in cleats ( c. 9% total area). In these, sulphur isotope compositions for both syngenetic and epigenetic pyrite include isotopically light and heavy variants, suggesting diagenetic and hydrothermal fluid formation. Late/post-Visean cleat-filling pyrite is enriched in Se (up to 266 ppm) compared to the earlier-formed material (Se up to 181 ppm). Anomalous Se may have been sourced from near-by sulphidic Dalradian metamorphic rocks. Initial Se sequestration is associated with syngenetic pyrite mineralization, absorbed from seawater and pore waters, with additional Se introduced from fluids mobilized during epigenetic pyrite formation. Cleats from local brittle fracturing provided channels for fluid flow and a locus for precipitation of comparatively high-Se pyrite. Permian dolerite intrusions may have provided an enrichment source and/or fluid distribution mechanism. The Se concentrations of the Greenburn coals relate to multi-stage mineralization, with cleat-filling pyrite showing the highest Se content, and highlight the potential for high Se in similarly altered and fractured coal deposits worldwide. Supplementary material: LA-ICP-MS maps for Fe, Se, Ag, As, Cu, Hg, Pb and Te for Greenburn coal samples from seams 9300 Lime and 6900 Burnfoot Bridge are available at https://doi.org/10.6084/m9.figshare.c.3967860

Highlights

  • As and Se readily substitute for S in pyrite, while Hg occurs as micro-inclusions, and may be introduced through hydrothermal fluids, or scavenged from gases by pyrite (Yudovich & Ketris 2006)

  • Our results indicate that the high Se content of Greenburn coals relates to the evolution of a multi-stage pyrite mineralization, including deposition, diagenesis and catagenesis of the host rocks, intrusive igneous activity, deformation and fluid mobilization

  • Selenium may have been sourced from sulphidic Dalradian rocks that have been reported to contain high trace element concentrations

Read more

Summary

Objectives

The aims of this study are: (1) to identify the origin of the pyrite in Greenburn coals; (2) to examine how the Se content relates to pyrite genesis, i.e. the relationship between syngenetic/epigenetic pyrite paragenesis and high Se concentrations; (3) to identify the potential sources and processes of Se enrichment in the Greenburn coals; and (4) to recognize any potential economic or environmental implications

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.