Abstract

Oxidation of CH2F2 (R32), a widely used refrigerant, was investigated experimentally and computationally using a micro flow reactor with a controlled temperature profile (MFR). Specifically, we examined weak flames of a stoichiometric CH2F2/air mixture in MFR observed at low flow velocities. In the case of the maximum wall temperature of 1300 K, weak flames showed two luminous regions at 1240 and 1290 K, implying two-stage oxidation. Computations also indicated two-stage heat release. Computational weak flame positions also showed good agreement with experimentally obtained results. To assess the validity of chemical kinetics in detail, species measurements of CH2F2, CO, CO2, H2O, HF, and CF2O for a stoichiometric CH2F2/air weak flame were conducted using Fourier Transform Infrared spectrometry (FTIR). The present species measurements elucidated the CH2F2/air weak flame structure at 800–1300 K and remaining intermediates of H2O and CF2O at the end of the reactor. Computational results also showed good agreements with measurement, indicating the validity of the computations using the chemical kinetics. For further analysis for CH2F2 weak flame at 1300 K, the reaction path and rate-of-production analyses revealed a major reaction at the first-stage heat release: the formation of HF and intermediates, and that at the second stage is the CO2 formation from CO. Computations also showed intermediates of H2O and CF2O remain at the end of the reactor. An additional numerical experiment for a CH2F2/air mixture at the maximum wall temperature of 2000 K, demonstrated that the reaction of H2O and CF2O proceeded slowly at temperatures higher than 1300 K, with complete oxidation of CH2F2/air mixture. In conclusion, results show that the overall reactivity of CH2F2 decreases because of the low reactivity intermediates such as CF2O and H2O if oxidation occurs in a non-adiabatic system such as MFR. Such specific characteristics of the CH2F2/air mixture are concealed in the common zero-dimensional adiabatic simulations. Results demonstrated that the CH2F2 reactivity depend strongly on the temperature history during oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.