Abstract
In many binary medical classification problems, the cost of misclassifying one category is higher than the other, and in these applications it is desirable to employ a classifier with selective sensitivity or specificity. This work explores the utility of a fuzzy multi–criteria function for performance evaluation during knowledge–based medical classification and prediction. The method presented here uses fuzzy optimization to combine the sensitivity, specificity, and accuracy of classification as goals in a single objective function. This approach is used to assign flexible goals, which can be used to maximize the outcome in terms of each one of the goals. The proposed approach significantly increases the sensitivity and the specificity while maintaining or increasing accuracy. The versatility of the method is further exploited in a multi-model approach, using individual structures of multi-objective optimization of sensitivity and specificity separately, and then combining their outcomes through a decision-making module. Among various medical benefits derived from applying this technique, the divergent feature sets selected by high sensitivity and specificity models lend insight into factors more integrally connected to what causes risk of death for patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.