Abstract

Olivine is the dominant mineral present in kimberlite magmas; however, due to the volatile-rich nature of most kimberlites, they rarely survive late-stage serpentinisation. Here we present major and trace element data for a rare example of ultra-fresh olivine in a macrocrystic calcite kimberlite from the Benfontein kimberlite sill complex. Olivines are characterised by xenocrystic cores surrounded by multiple growth zones representing melt crystallisation and late-stage equilibration. Two distinct core populations are distinguished: Type 1) low Fo (88–89), Ni-rich, Ca- and Na-rich cores, interpreted here to be the result of carbonate–silicate metasomatism potentially as part of the earliest stages of kimberlite magmatism, and Type 2) high Fo (91–93), Ni-rich, low-Ca cores derived from a typical garnet peridotite mantle source. In both cases, the cores have transitional margins (Fo89–90) representing equilibration with a proto-kimberlite melt. Trace element concentrations, in particular Cr, of these transition zones suggest formation of the proto-kimberlite melt through assimilation of orthopyroxene from the surrounding garnet peridotite lithology. Trace element trends in the surrounding melt-zone olivine (Fo87–90) suggest evolution of the kimberlite through progressive olivine crystallisation. The final stages of olivine growth are represented by Fe-rich (Fo85) and P-rich olivine indicating kimberlite evolution to mafic compositions. Fine (<60μm), Mg-rich olivine rims (Fo94–98) represent equilibration with the final stages of kimberlite evolution back to Fe-poor carbonatitic melts.We present a step-by-step model for kimberlite magma genesis and evolution from mantle to crust tracked by the chemistry of olivines in the Benfontein kimberlite. These steps include early stages of metasomatism and mantle assimilation followed by direct crystallisation of the kimberlite melt and late-stage equilibration with the evolved carbonatitic residual liquids. The Ca contents of the Type 1 xenocrystic olivines are the highest yet measured for mantle olivines, and do not overlap with any known mantle xenolith lithologies. These olivines likely represent an important stage of metasomatism directly related to the early stages of kimberlite melt ponding at the base of the lithospheric mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.