Abstract

Laser welding with high beam intensity generates a metal vapor, which partially displaces the metal melt, forming a narrow keyhole-shaped fusion zone. This study conducted theoretical analysis of the keyhole formation processes within fiber laser welding, based on three types of experimental observation. During the welding mode transition process, the keyhole formation was abrupt due to the jump-like absorptivity variation in the concave molten pool. In the primary stage of the laser keyhole welding process (when the laser was turned on), the keyhole depth grew rapidly and then slowed down before reaching a steady state. The keyhole formation time was related to the welding characteristic time (WCT), determined as the ratio of laser spot diameter to the welding speed. In the steady stage of fiber laser keyhole welding, the keyhole formation process was a periodic motion of the laser beam on the front keyhole wall (FKW). The periodic drilling occurred because the laser beam was irradiated on the FKW, with the inclination angle fluctuating around the Brewster angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.